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Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing
a serious threat to public health. It can enter the food supply chain at various
stages of production, processing, distribution, and marketing. High prevalence
of Salmonella necessitates efficient and effective approaches for its identifica-
tion, detection, and monitoring at an early stage. Because conventional meth-
ods based on plate counting and real-time polymerase chain reaction are time-
consuming and laborious, novel rapid detection methods are urgently needed
for in-field and on-line applications. Biosensors provide many advantages over
conventional laboratory assays in terms of sensitivity, specificity, and accuracy,
and show superiority in rapid response and potential portability. They are now
recognized as promising alternative tools and one of the most on-site applica-
ble and end user–accessible methods for rapid detection. In recent years, we
have witnessed a flourishing of studies in the development of robust and elab-
orate biosensors for detection of Salmonella in food. This review aims to provide
a comprehensive overview on Salmonella biosensors by highlighting different
signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.)
and critically analyzing its recent trends, particularly in combination with nano-
materials, microfluidics, portable instruments, and smartphones. Furthermore,
current challenges are emphasized and future perspectives are discussed.
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1 INTRODUCTION

Foodborne diseases caused by pathogenic bacteria have
become a noticeable threat to human health and global
economy (Campuzano, Yáez-Sedeño, & Pingarrón, 2017;
Chen, Picard, Wang, & Nugen, 2017; Ravindranath,
Mauer, Deb-Roy, & Irudayaraj, 2009; Reta, Saint, Michel-
more, Prieto-Simon, & Voelcker, 2018). Among food-
borne pathogens, Salmonella is one of the most com-
mon pathogens associated with foodborne diseases and
eventual deaths (Centers for Disease Control and Pre-
vention [CDC], 2019). Salmonella is a species of rod-
shaped Gram-negative bacteria belonging to the family
of Enterobacteriaceae (Ansari, Yazdian-Robati, Shah-
dordizadeh, Wang, & Ghazvini, 2017; Silva, Magalhães,
Freire, & Delerue-Matos, 2018). It contains two main
species, Salmonella enterica and Salmonella bongori with
more than 2,500 serotypes, and all of these serotypes
can cause disease in humans (World Health Organization
[WHO], 2018) People may get infected with Salmonella
through the consumption of contaminated food with some
symptoms such as diarrhea, fever, stomach cramps, nau-
sea, vomiting, and headache (Jasim et al., 2019). WHO
claims that Salmonella is one of the four major global
causes of diarrheal diseases and one of themicroorganisms
in which some resistant serotypes have emerged (WHO,
2018). In the United States, Salmonella is also the number
one of top four bacterial pathogens that cause foodborne
illnesses, apart from Clostridium perfringens, Campylobac-
ter, and Staphylococcus aureus (CDC, 2020a). According to
CDC, Salmonella is estimated to cause 1.35 million infec-
tions with 26,500 hospitalizations and 420 deaths in the
United States every year (CDC, 2020b). In an outbreak
between March 2013 and July 2014, over 600 individuals
were infected with SalmonellaHeidelberg, causing a recall
of over 23,000 units of rotisserie chicken products (CDC,
2014).
Considering its high prevalence, extremely low infec-

tion limits (1 CFU), and potential hazards, the limits of
Salmonella in food regulated by laws have been tight-
ened over the years (Silva et al., 2018). For example, Com-
mission Regulation (EC) No. 2073/2005 (amended by No.
1441/2007) requires the absence of Salmonella in a defined
amount of a given food product (10 or 25 g) placed on the
market during the shelf life.
Current routine methods for Salmonella detection

include culture methods, nucleic acid-based methods, and
enzyme-linked immunosorbent assay (ELISA) (details are
given in the Supporting Information). However, some of
them require highly trained personnel and sophisticated
instruments, and some are time-consuming and laborious
with false positive or negative results (Ansari et al., 2017).
Therefore, there is a continuous need for the development

of sensitive, specific, and reliable methods for rapid detec-
tion of Salmonella in food.
Biosensors offermany advantages over laboratory-based

assays, including high sensitivity, specificity, and accuracy,
and show superiority in rapid response, low cost, poten-
tial portability, and possible in situ applications (Rotariu,
Lagarde, Jaffrezic-Renault, & Bala, 2016). Therefore, they
are recognized as promising alternative tools for rapid
detection of Salmonella in food. In recent years, we have
witnessed a flourishing of research studies in this field
with numerous publications. Several reviews regarding
this subject also have been published with specific focuses
on nanomaterials (Pashazadeh et al., 2017), electrochem-
ical signal readout (Cinti, Volpe, Piermarini, Delibato, &
Palleschi, 2017; Silva et al., 2018), and aptamer recognition
(Ansari et al., 2017). However, to the best of our knowl-
edge, there is no systematical review on biosensors for
Salmonella detection in food. Therefore, this review aims
to give a comprehensive overview on Salmonella biosen-
sors (Figure 1), with in-depth discussion on different biore-
ceptors and various transducers. The recent trends, cur-
rent challenges, and future perspectives are also reviewed
and outlined.

2 BIORECEPTORS USED IN Salmonella
BIOSENSORS

Biosensor is “a self-contained integrated device which
is capable of providing specific quantitative or semi-
quantitative analytical information using a biological
recognition element which is in direct spatial contact with
a transducer,” as defined by the International Union of
Pure and Applied Chemistry (IUPAC) (Kirsch, Siltanen,
Zhou, Revzin, & Simonian, 2013). They have been widely
flourished for Salmonella detection in recent several years.
Bioreceptors are one of the most crucial components of
a Salmonella biosensor to make specific and sensitive
detection possible. In principle, any biomolecule/assembly
that can recognize the target is able to be used as a
bioreceptor (Bazin, Tria, Hayat, & Marty, 2017). Among
all types of bioreceptors, antibodies, aptamers, bacterio-
phages, antimicrobial peptides (AMPs), and nucleic acid
probes are most common for Salmonella recognition. A
detailed comparison of these five bioreceptors is listed in
Table 1.

2.1 Antibodies

Antibodies are large proteins produced by the immune
system that can bind to their targets with both
extremely high affinity and specificity (Crivianu-Gaita &
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F IGURE 1 Schematic overview of biosensors for Salmonella detection and its recent trends

TABLE 1 Comparison of different bioreceptors for Salmonella recognition

Bioreceptor Advantages Limitations
Antibody High affinity and specificity Poor stability; high cost; laborious production
Aptamer High stability, affinity, and specificity; ease of

synthesis and modification; low cost
Sensitive to nuclease attack

Bacteriophage Potential for discrimination of live and dead bacterial
cells; low cost

Low capture efficiency when drying; potential
lysis of bacterial cells during the detection

AMPs High affinity and stability; simple synthesis; low cost Poor specificity
Nucleic acid probe High stability; ease of synthesis and modification Mainly restricted to genosensors

Abbreviation: AMPs, antimicrobial peptides.

Thompson, 2015). They can be classified into five main
classes: immunoglobulin (Ig) A, IgD, IgE, IgG, and IgM
based on their heavy chains with IgG as the predomi-
nant class of antibodies used in the field of biosensing

(Crivianu-Gaita & Thompson, 2016). A typical IgG
molecule is composed of two heavy chains and two light
chains that form a characteristic Y-shaped structure (Con-
roy, Hearty, Leonard, & O’Kennedy, 2009). It also contains
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two regions: the fragment crystallizable (Fc) region and
the fragment antigen-binding region for immune response
activation and antigen recognition, respectively (Furst &
Francis, 2019).
As one of the “gold standard” recognition elements,

antibodies are prominently used in Salmonella biosen-
sors due to their unique properties, especially high
affinities for their targets.However, the production of high-
quality antibodies always requires isolation from immu-
nized mammals or mammalian cells, which is expensive,
time-consuming, and laborious (Bruce & McNaughton,
2017).
To overcome these limitations, nanobody, a small pro-

tein (∼15 kDa) is also developed for Salmonella recogni-
tion. It consists of a single heavy-chain variable domain
and can be mass produced based on standard microbial
expression systems (Jayan, Pu, & Sun, 2020). He et al.
(2020) isolated a nanobody after biopanning of a con-
structed nanobody library and demonstrated its feasibility
for Salmonella Enteritidis detection using a conventional
ELISA test, achieving a limit of detection (LOD) of 1.4 ×
105 CFU/mL. However, the development of nanobody for
Salmonella biosensing is immature, and to the best of our
knowledge, no relevant biosensor has been reported, as it is
always challenging to prepare immune libraries and select
desirable nanobodies.

2.2 Aptamers

Aptamers are single-stranded DNA (ssDNA) or RNA
obtained by an in vitro selection process called System-
atic Evolution of Ligands by Exponential Enrichment
(SELEX), first reported by Gold and Szostak in the early
1990s (Park, 2018; Robati et al., 2016). Due to the spe-
cific three-dimensional (3D) structures, aptamers can bind
to a variety of targets from small molecules to whole
cells with high affinity and specificity (Song, Wang, Li,
Zhao, & Fan, 2008). They have gradually become power-
ful tools for target recognition with incomparable inher-
ent advantages such as physical and chemical stability,
ease of synthesis and modification, nontoxicity, struc-
ture memory, and long half-life (Shahdordizadeh et al.,
2017). Aptamers have been used as alternatives to con-
ventional antibodies for the fabrication of various types of
biosensors for Salmonella detection (Bayramoglu, Ozalp,
Dincbal, & Arica, 2018; Duan et al., 2018; Li et al., 2018;
Srinivasan, Ranganathan, DeRosa, & Murari, 2018). More
importantly, as single oligonucleotides, they can hybridize
with their complementary DNA (cDNA) andmay undergo
significant conformational changes in the presence of the
targets, offering more flexibility in the design of novel
biosensors. Due to the outstanding proprieties and great

potential, aptamer-based biosensors, namely, aptasensors,
for Salmonella detection are emphasized particularly in
Section 4.2.

2.3 Bacteriophages

Bacteriophages are bacteria virus that can infect their host
bacteria and utilize the “machinery” of the host cells to
conduct replication cycles (Bhardwaj, Bhardwaj, Mehta,
Kim,&Deep, 2017; Chen,Alcaine, Jiang, Rotello, &Nugen,
2015; Yue et al., 2017). As novel bioreceptors, they offer
several advantages including high specificity to host bac-
teria, tolerance to harsh environmental conditions, and
capability to reproduce large quantities of progeny phages
(Farooq, Yang, Ullah, & Wang, 2018). Because bacterio-
phages can only replicate in a viable host, phage-based
biosensors have the potential to distinguish between live
and dead bacterial cells (Chen, Alcaine, et al., 2015),
which make them unique over other bioreceptor-based
sensing methods for Salmonella detection. This interest-
ing property was demonstrated by Fernandes et al. (2014)
who used a broad spectrum virulent phage (PVP-SE1) as
a bioreceptor to distinguish viable and viable but non-
culturable (VBNC) Salmonella cells from the dead ones.
Furthermore, various types of bacteriophages have been
reported for Salmonella biosensing, including M13, E2,
PRD1, and P22 (Chai et al., 2013; Lakshmanan et al., 2007;
Laube, Cortés, Llagostera, Alegret, & Pividori, 2014; Li
et al., 2010; Mack et al., 2017; Niyomdecha et al., 2018;
Olsson, Wargenau, & Tufenkji, 2016; Park, Park, Wikle,
& Chin, 2013). Some bacteriophage-based platforms are
also being commercialized for Salmonella detection. One
example is Sample6 DETECT System (Sample6 Technolo-
gies, Inc., Boston, MA, USA). It utilizes engineered bac-
teriophages to specifically interact with the target bacte-
ria including Salmonella, and cause the bacteria express
luminescent enzymes. This platform enables highly sen-
sitive detection of foodborne pathogens with results
comparable to polymerase chain reaction (PCR) and
immunoassays.
The big challenge of bacteriophages as bioreceptors is

that bacteriophages may lose their capture activity when
they are dry (Singh et al., 2010). Moreover, lysis of the
host bacterial cells during the detection can result in a
decrease in measured signals (Jayan et al., 2020; Templier,
Roux, Roupioz, & Livache, 2016). Nevertheless, phage-
based biosensors hold the promise to address one of the
key challenges facing the researchers in this field that live
Salmonella is always hard to be discriminated rapidly and
accurately. More innovative and feasible demonstration of
this type of biosensors would be highly expected in the
near future.
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2.4 Antimicrobial peptides

AMPs are short peptide fragments (12 to 50 amino acid
residues), existing in multiple niches in nature (Qiao,
Lei, Fu, & Li, 2017b). They are important components of
innate immune system that provide the first line of defense
against invading pathogens (Patel & Akhtar, 2017). AMPs
can attach to the membrane of bacteria mainly via electro-
static and hydrophobic interactions (Qiao, Lei, Fu, & Li,
2017a). The ease of synthesis and modification, low cost,
and intrinsic stability in harsh conditions render AMPs
promising candidates as bioreceptors for Salmonella detec-
tion. Amulti-AMP array was developed forEscherichia coli
O157:H7 and Salmonella Typhimurium detection based
on both direct and sandwich formats (Kulagina, Shaffer,
Anderson, Ligler, & Taitt, 2006). Five types of AMPs—
Polymyxin B, Polymyxin E, Magainin I, Cecropin A, and
Parasin—were tested with LODs ranging from 105 to 5 ×
106 cells/mL for S. Typhimurium. Mannoor, Zhang, Link,
andMcAlpine (2010) immobilized semiselective magainin
I AMPs on microcapacitive electrode arrays and demon-
strated its recognition capabilities toward both E. coli and
Salmonella.
The high affinity of AMPs toward their target bacteria

makesAMPs-based biosensors functionwell evenwith low
cell concentrations. Themain deficiency of AMPs as biore-
ceptors for Salmonella recognition is their semiselectivity
that they always fail to differentiate Salmonella from other
pathogenic bacteria. Moreover, the mechanisms of AMPs’
action are still unclear, which hinders their wide applica-
tion (Qiao, Fu, Lei, & Li, 2020).

2.5 Nucleic acid probes

Genosensors based on the detection of the specific nucleic
acids in bacterial cells are also extensively studied for
Salmonella detection. They rely on the natural specificity
and affinity of ssDNA/RNA to its commentary strand
(Paniel, Baudart, Hayat, & Barthelmebs, 2013). In these
biosensors, nucleic acid probes play an essential role for
target recognition. In most cases, DNA extracted from
Salmonella cells is denatured and exposed to the DNA
probes. Then hybridization occurs at the sensor surface
and induces a measurable signal (Vanegas, Gomes, Cav-
allaro, Giraldo-Escobar, & McLamore, 2017). Das et al.
(2014)modified ssDNAprobes on the surface of the screen-
printed electrode to target the Vi genes from Salmonella
Typhi with a LOD of 50 pM. In order for higher sensitiv-
ities, various DNA amplification strategies such as rolling
circle amplification (RCA) (Zhu et al., 2014) and PCR (Luo
et al., 2014; Ye et al., 2019) are commonly integrated into
genosensors.

Nucleic acid probes are ease of synthesis and modifi-
cation, thermally stable, and flexible. However, they are
always restricted to genosensors. The main challenges of
genosensors may include laborious extraction and frag-
mentation of the genomic DNA, as well as the requirement
of signal amplifications.

3 BIOSENSORSWITH DIFFERENT
TRANSDUCES FOR DETECTION OF
Salmonella IN FOOD

In recent years, biosensors for Salmonella detection with
the aforementioned bioreceptors and different signal
transducing mechanisms have attracted ever-increasing
interest. Among them, some have been validated in food
matrices and some are potential for food samples. In this
section, various biosensors for Salmonella detection classi-
fied by transducers are discussed with a specific focus on
electrochemical, optical, and piezoelectric biosensors.

3.1 Electrochemical biosensors

Electrochemical biosensors are one of the most common
biosensors for Salmonella detection due to their privileged
merits of high sensitivity, low cost, and miniaturization
potential (Silva et al., 2018). Based on different transducers,
they can be classified into amperometric, voltammetric,
impedimetric, and potentiometric biosensors (Figure 2).
Table 2 (2015 to 2020) andTable S1 (before 2015) summarize
the electrochemical biosensors for Salmonella detection.

3.1.1 Amperometric biosensors

Amperometric biosensors measure the current changes
on the application of a constant potential during a fixed
period of time (Riu & Giussani, 2020). Over the past sev-
eral decades, they have played an important role in rapid
biosensing of Salmonella in food.
Previously, our group measured phenol concentra-

tions using a tyrosinase carbon paste electrode to indi-
rectly detect S. Typhimurium with a LOD of 5 × 103
CFU/mL in chicken carcass wash water within 2.5 hr
(Che, Li, Slavik, & Paul, 2000). Salmonella Typhimurium
cells were sandwiched between immunomagnetic beads
(IMBs) and alkaline phosphatase (ALP)-labeled antibod-
ies. ALP catalyzed the conversion of phenylphosphate
substrate to phenol that was further quantified using
the tyrosinase carbon paste electrode. Later, we mod-
ified the approach with a bienzyme (tyrosinase and
horseradish peroxidase [HRP]) electrode, achieving an



6 BIOSENSORS FOR SALMONELLA DETECTION. . .

F IGURE 2 Examples of electrochemical
biosensors for Salmonella detection. (a) An
amperometric biosensor based on
horseradish peroxidase with gold
nanoparticles for signal amplification (Savas
et al., 2018). (b) A voltammetric biosensor
combined with a microfluidic device (Singh
et al., 2018). (c) An aptamer-based
impedimetric biosensor using nickel
nanowire bridge (Wang, Huo, Qi, et al., 2020).
(d) A label-free potentiometric biosensor
(Silva, Magalhaes, et al., 2019). Figures 2b, 2c,
and 2d are reprinted with permission from
Elsevier B.V.

improved LOD of 4.2 × 102 CFU/mL (Yang, Ruan, &
Li, 2001). Different from those indirect detection prin-
ciples, subsequent researches focused on a direct sand-
wich ELISA format for Salmonella detection. Salam and
Tothill (2009) immobilized antibodies on the surface of a
screen-printed gold working electrode to specifically cap-
ture S. Typhimurium. A sandwich structure was formed
after the introduction of HRP-labeled antibodies. Taking

3,3′,5,5′-tetramethylbenzidine (TMB)/H2O2 as the enzyme
mediator/substrate system, this approach allowed sensi-
tive detection of S. Typhimurium at approximately 21
CFU/mL.
To further improve the detection sensitivity, Liébana

et al. (2009) incorporated PCR into an amperometric
biosensor with an extremely low LOD of 1 CFU/mL
in broth and diluted milk without any pretreatment.
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IMBs were used for the capture and preconcentration
of Salmonella from milk samples. The captured bacteria
were lysed to release genomic DNA which was further
amplified by PCR with two labeled primers (biotin and
digoxigenin). Then the double-tagged amplicon was cap-
tured by the streptavidin-modifiedmagnetic beads, labeled
with HRP, and electrochemically detected. This research
also demonstrated that immunomagnetic separation (IMS)
could effectively replace the conventional selective culture
to significantly reduce the assay time from 3–5 days to 3.5
hr.
Later, Melo et al. (2018) focused on the optimization of

various steps toward the assembly of the biosensor, includ-
ing the pretreatment of the gold electrode, immobilization
of antibodies, and concentrations of enzymatic substrate
and mediator with a LOD of 10 CFU/mL.
As reported, the amperometric strategy is very sensitive

for Salmonella detection. However, most of amperomet-
ric biosensors rely on tedious labeling to increase the elec-
trochemical reaction at the electrode surface, which limits
their in-field applications.

3.1.2 Voltammetric biosensors

Voltammetric biosensors monitor the changes in current
under varying potentials (Xu, Wang, & Li, 2017).
Label-free voltammetric detection of Salmonella can be

accomplished by monitoring the attachment of the bacte-
rial cells to electrode surface, aswell as the hybridization of
the target DNA with previously immobilized DNA probes,
based on different detection techniques such as cyclic
voltammetry and differential pulse voltammetry (DPV)
(Appaturi et al., 2020; García et al., 2012; Singh et al.,
2018; Tabrizi & Shamsipur, 2015). For example, Singh et al.
(2018) deposited graphene oxide (GO)-wrapped carboxy-
latedmultiwalled carbonnanotubes compositeswith supe-
rior electron transfer behavior onto a patterned indium tin
oxide electrode for improved antibody loading and detec-
tion sensitivity. Salmonella Typhimuriumwas captured by
the immobilized antibodies and then detected using cyclic
voltammetry with a low LOD of 0.376 CFU/mL. An elec-
trochemical genosensor based on DNA probe-modified
nanoporous glassy carbon electrode was developed for the
detection of Salmonella DNA (Tabrizi & Shamsipur, 2015).
The porous glassy carbon electrode provided a suitable
platform for the immobilization of DNA probes. Conse-
quently, as low as 2.1 pM of target DNA could be detected
using a DPV method.
Incorporating electrochemical labels, such as enzymes

(e.g., HRP and ALP), metallic nanoparticles, and so on,
into a voltammetric biosensor also contributes to high
detection sensitivities. Gold nanoparticles (AuNPs)–

HRP conjugates were used for signal amplification
for S. Typhimurium detection (Dai et al., 2019). Tar-
get bacteria and the cDNA modified on the electrode
competitively bound to aptamers on AuNPs-HRP. By
employing metal–organic framework (MOF)–graphene
composites with excellent electrochemical performance
as substrate and the catalytic action of HRP on the H2O2–
hydroquinone system, this method achieved a satisfactory
LOD of 5 CFU/mL. Zhu et al. (2014) incorporated RCA
into an electrochemical biosensor with a LOD of 6.76 aM
for target DNA. The invA gene hybridized with the capture
DNA on electrode surface and formed a sandwich struc-
ture with the circularization mixture. RCA was initiated
in the presence of dNTPs and phi29 DNA polymerase to
produce long ssDNA, which was an ideal carrier to load a
considerable number of AuNPs–DNA probes. Enzymatic
electrochemical signals were triggered after attaching ALP
to AuNPs surface. The results demonstrated that as low as
6 CFU/mL of Salmonella could be detected in real milk
samples.
Label-based voltammetric detection of Salmonella also

can be accomplished based on the oxidation and reduc-
tion of metallic elements under the applied potentials
(de Oliveira, Martucci, & Faria, 2018; Fei, Dou, & Zhao,
2016). Afonso et al. (2013) developed a disposable biosen-
sor using AuNPs as electrochemical labels. Salmonella
was sandwiched between IMBs and AuNPs, and sub-
sequently detected using DPV based on the electroox-
idation of AuNPs to AuCl4− and reversed electrore-
duction to Au(0) on electrode surface. Taking advan-
tage of IMBs for preconcentration and AuNPs as labels,
this method showed a LOD of 143 cells/mL and per-
formed well in shimmed milk samples. Later, Freitas,
Viswanathan, Nouws, Oliveira, and Delerue-Matos (2014)
proposed a similar approach based on Fe@Au core/shell
nanoparticles and CdS nanocrystals by employing square-
wave anodic stripping voltammetry detection. The Fe@Au
core/shell nanoparticles were detached before detection.
The results demonstrated that as low as 13 cells/mL
of S. Typhimurium could be detected in less than
1 hr.
Zong et al. (2016) amplified the DPV signals based

on entropy-driven molecular switch for S. Typhimurium
detection with a LOD of 13 CFU/mL. Salmonella bound to
its aptamer and released cDNA. Then the cDNA opened
the capture hairpinDNA immobilized on the electrode sur-
face.With the addition of the linkDNA that hadmore com-
plementary bases with the capture DNA, the cDNA was
displaced and recycled. Thus, the capture hairpin DNA
was continuously opened. DPV signals were obtained after
labeling with electrochemical reagent–modified AuNPs.
This biosensor was further validated in milk with recov-
eries between 96.1% and 103.0%.
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Voltammetric biosensors seem to be one of the most
attractive electrochemical biosensors for Salmonella detec-
tionwith high sensitivity and simplicity. As it is known, the
detection performance of label-free voltammetric biosen-
sors depends largely on the electrochemical properties
of the electrode substrates and the immobilization of
the bioreceptors. And the label-based ones are mainly
restricted by the saturation kinetics and stability of the
adopted labels. In this respect, voltammetric biosensors
will no-doubt benefit from the rapid development of nano-
materials and biotechnology in the near future to fulfill
extremely sensitive and reliable detection and monitoring
of Salmonella in food.

3.1.3 Impedimetric biosensors

Impedimetric biosensors, measuring the changes of an
electrical field, are recognized as promising techniques for
the detection of Salmonella (Silva et al., 2018; Xu, Wang,
et al., 2017). They have played a vital role in Salmonella
detection alongwith less assay time, higher sensitivity, and
miniaturization potential (Lindholm-Sethson et al., 2010;
Pashazadeh et al., 2017).
It is reported that natural cell membranes (thickness

5 to 10 nm) exhibit a capacitance of 0.5 to 1.3 μF/cm2

and a membrane resistance of 102 to 105 Ω⋅cm2, making
it possible to increase the interface impedance on elec-
trode surface in the presence of captured bacteria (Wang,
Ye, & Ying, 2012). Therefore, the attachment of bacte-
ria to electrode surface can be directly monitored. Nan-
dakumar et al. (2008) developed a label-free impedimetric
biosensor based on “Bayesian decision theory” that could
detect 500 CFU/mL of S. Typhimurium, in a detection
time of 6 min. However, it is far from satisfactory due to
the extremely low infection limits of Salmonella. In fact,
great efforts have been made on electrode modification
to obtain higher sensitivities. Bagheryan, Raoof, Golabi,
Turner, and Beni (2016) proposed a label-free approach for
sensitive detection of S. Typhimurium in food samples by
immobilizing aptamers onto the surface of screen-printed
carbon electrodes, in which a diazonium-supporting layer
was grafted for the formation of an aptamer layer
with high density. They obtained a satisfactory LOD
of 6 CFU/mL and also demonstrated its feasibility for
S. Typhimurium detection in apple juice. Sheikhzadeh,
Chamsaz, Turner, Jager, and Beni (2016) reported on
the use of polypyrrole-based polymers to design a label-
free impedimetric biosensor for S. Typhimurium detec-
tion, reaching a lower LOD of 3 CFU/mL. This biosen-
sor was fabricated based on the use of poly [pyrrole-co-3-
carboxyl-pyrrole] copolymer for aptamer immobilization.
The intrinsic electrical properties of the polymeric surface

eliminated the extra addition of redox probes. Later, Singh,
Ali, Kumar, Ahmad, and Sumana (2018) deposited func-
tionalized MoS2 nanosheets on the patterned hydrolyzed
indium tin oxide microelectrode surface, reaching an
extremely low theoretical LOD of 1.56 CFU/mL for
S. Typhimurium.
Compared with label-free impedimetric biosensors, the

label-based ones are less attractive mainly due to their
tedious labeling process. Despite this limitation, novel
labeling approaches were investigated in order to achieve
outstanding performance. For example, AuNPs were used
to fabricate a novel impedance immunosensor to detect
S. Typhi (Pal, Sharma, & Gupta, 2016). The bacteria were
tagged with AuNPs via antigen–antibody interaction, and
a micron-gap interdigitated electrode that can generate
high electric field gradients near the edge of the elec-
trode was used to monitor the small changes around the
microenvironment of bacterial cells. By measuring the
changes in impedance, the LOD of this biosensor was
100 CFU/mL. Our group developed a label-dependent
impedimetric immunosensor based on glucose oxidase for
rapid detection of E. coli O157:H7 and S. Typhimurium
in food (Xu, Wang, & Li, 2016). Streptavidin-coated mag-
netic beads were functionalized with biotinylated anti-
bodies for the separation of the target cells. The cap-
tured bacteria were further labeled with glucose oxidase
to trigger an enzymatic reaction that produced gluconic
acid and decreased the impedance of the solution. The
LOD for S. Typhimurium in chicken rinse water was 1.04
× 103 CFU/mL. Recently, Wang, Huo, Qi, et al. (2020)
labeled S. Typhimuriumwith nickel nanowires as conduc-
tive bridges to achieve a LODof 80CFU/mL in 2 hr of assay
time and demonstrated its application in spiked chicken
samples.
As mentioned above, enormous efforts have been made

on impedimetric biosensors for Salmonella detection, par-
ticularly for the label-free ones with shorter detection
time and simpler manipulations. However, impedimet-
ric biosensors are heavily relying on the advance in
the fabrication of electrodes especially in micro or nano
range. In this regard, with the emerging of new interdig-
itated electrodes, electrode arrays, cost-effective screen-
printed electrodes, and so on, the impedimetric biosen-
sors are expected to play a greater role in realizing super
sensitivity, high-throughput detection, and point-of-care
testing in bacterial pathogen analysis and monitoring.
Moreover, impedancemethod is known for its signal insta-
bility due to the electrode to electrode and probe varia-
tions. Normalization of the impedance signals can be help-
ful to minimize this inconsistency in laboratory research
(Gökçe et al., 2020). For commercialized impedimetric
biosensors, the potential solutions include the better con-
trol of electrodemanufacturing inmass production as well
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as self-calibration against electrode variations during tests
to ensure reproducible results.

3.1.4 Potentiometric biosensors

Potentiometric biosensors usually use a high impedance
voltmeter to measure the difference in electrical poten-
tial/electromotive force between working and reference
electrodes under a zero or negligible current flow
(Velusamy, Arshak, Korostynska, Oliwa, & Adley, 2010).
Silva, Magalhães, Oliva-Teles, and Delerue-Matos (2015)

reported a potentiometric method based on a cadmium-
selective polymeric membrane microelectrode for S.
Typhimurium detection using CdS nanoparticles as labels.
The bacterial cells were specifically captured by the func-
tionalizedmagnetic nanoparticles (MNPs) and then bound
to antibodies labeled with CdS nanoparticles. The con-
centration of S. Typhimurium was determined by the
amount of cadmium ions released upon the dissolution
of the nanoparticles. This biosensor obtained a LOD of 20
cells/mL and the assay time was 75 min.
However, resorting to nanomaterials for signal gener-

ation/amplification increases the analysis time and the
complexity of the assay. Label-free potentiometric detec-
tionwas accomplished bymeasuring the charge changes in
the presence of S. Typhi that could respond to 0.2 CFU/mL
of target bacteria in less than 60 s (Zelada-Guillén, Blon-
deau, Rius, & Riu, 2013; Zelada-Guillén, Riu, Düzgün, &
Rius, 2009). Recently, potentiometric sensors based on the
blocking surface principle that claimed to achieve ampli-
fication capabilities close to the label-based approaches
were proposed for Salmonella detection (Silva, Almeida,
et al., 2019; Silva, Magalhães, et al., 2019). The binding
of Salmonella cells disrupted the internal marker ion flux
through the sensing membrane that was able to induce a
potentiometric response. Using an ion-selective electrode
with a polymer inclusionmembrane or a paper-based strip
electrode as transducers, these methods allowed sensitive
detection of Salmonella with LODs at several cells/mL in
less than 1 hr. Furthermore, they were also able to demon-
strate this application in apple juice.
Though potentiometric biosensors are capable of label-

free detection with extremely high sensitivity, they are
less studied for Salmonella detection, probably due to the
tedious optimization of experimental conditions and stabi-
lization of the reference electrode (Silva et al., 2018).

3.2 Optical biosensors

Optical biosensors are those devices that comprise a trans-
ducer capable of converting the interactions of biore-

ceptors with their targets into measurable optical sig-
nals (Jiang, Lan, Yao, Zhao, & Ping, 2018). They have
attracted ever-increasing attention due to their simplic-
ity, sensitivity, stability, and rapidity (Khansili, Rattu, &
Krishna, 2018).Optical biosensors forSalmonelladetection
are mainly classified into four types: colorimetric, surface-
enhanced Raman scattering (SERS), fluorescent, and sur-
face plasmon resonance (SPR) biosensors, based on dif-
ferent optical signal-transducing mechanisms (Figure 3).
Optical biosensors for Salmonella detection are summa-
rized in Table 3 (2015 to 2020) and Table S2 (before 2015).

3.2.1 Colorimetric biosensors

Colorimetric biosensors along with naked-eye signal out-
put are attractive for the detection of Salmonella due to
their advantages of quick response, simple operation, and
no need for complicated apparatus (Ding, Wang, Li, &
Chen, 2016). They have been extensively studied on the
basis of (a) the inherent optical characteristics of nanopar-
ticles and (b) color change originated from enzymatic or
chemical reactions (Chen & Xie, 2015).

Colorimetric biosensors based on AuNPs aggregation
AuNPs possess unique optical properties with color shifts
corresponding to their dispersion and aggregation status
that well-dispersed AuNPs solution displays a red color
and the aggregated one appears in purple or blue (Bui,
Ahmed, & Abbas, 2015). Based on DNA hybridization,
AuNPs-based methods are commonly used for the detec-
tion of Salmonella genomic DNA (Majdinasab, Amin-
lari, Sheikhi, Niakousari, & Shekarforoosh, 2013; Prasad,
Shankaracharya, & Vidyarthi, 2011; Thavanathan, Huang,
& Thong, 2015). For example, Thavanathan et al. (2015)
modified DNA probes on AuNPs andGO to target the invA
gene of S. enterica. The hybridization of DNA probes with
the target genes induced the aggregation of AuNPs on GO
surface, along with a color change from pink to purple.
This biosensor achieved a LOD of 1 nM for the DNA tar-
get. This reflects the sensitivity of genosensors. However,
extraction of DNA genomes from bacterial cells is always
time-consuming and laborious.
To overcome this limitation, direct detection of the

whole cell of Salmonella is performed. Wang, Singh et al.
(2010) proposed a simple colorimetric method for label-
free detection of S. Typhimurium cells using antibody-
conjugated oval-shaped AuNPs for signal output, achiev-
ing a LOD of 104 bacteria/mL. As Salmonella is much
larger in size than the antibody-conjugated oval-shaped
AuNPs, several AuNPs conjugated to one bacterial cell
that made AuNPs aggregate. Moreover, destruction of
the targeted bacteria was achieved by employing the
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F IGURE 3 Examples of optical
biosensors for Salmonella detection. (a) A
colorimetric biosensor based on gold
nanoparticles aggregation (Ma et al., 2017).
(b) A label-based surface-enhanced Raman
scattering biosensor using
nanoaggregate-embedded beads as labels (Su
et al., 2019). (c) Direct and reverse fluorescent
biosensing strategies based on
immunomagnetic beads and quantum dots
(Yin et al., 2016). (d) A surface plasma
resonance biosensor using biocatalyzed
precipitation for signal enhancement (Farka
et al., 2016). Figures 3a,3b, and 3c are
reprinted with permission from Elsevier B.V.
Figure 3d is reprinted with permission from
American Chemical Society

photothermal effect of AuNPs, which could avoid the dis-
tribution of contaminated foods. The protective effect of
aptamer for AuNPs stabilization was also utilized to detect
Salmonella (Ma, Song, Zhou, Xia, &Wang, 2017; Wu et al.,
2012). In these cases, the adsorption of aptamers on the
surface of AuNPs kept the nanoparticles well dispersed
in high-salt solution via electrostatic repulsion, whereas

in the presence of the target cells of Salmonella, the
aptamers preferentially bound to their targets and were
consequently separated from AuNPs, resulting in AuNPs
aggregation in high-saline environment.
AuNPs-based colorimetric biosensors are prevalent due

to their high simplicity, but one limitation of most AuNPs-
based methods is the instability of the nanoparticles.
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Colorimetric biosensors based on
enzymatic/enzyme-mimicking catalytic reaction
Another type of colorimetric biosensor is based on the
color change originated from enzymatic or enzyme-
mimicking catalytic reaction. HRP that can highly cat-
alyze its substrate TMB changing from colorless to blue
is most frequently used for Salmonella detection (Bayraç,
Eyidogăn, & Öktem, 2017; Chen & Xie, 2015; Zeinhom
et al., 2018). Besides, Zhu et al. (2016) incorporated cata-
lase and AuNPs into an immunoassay for sensitive detec-
tion of S. Typhimurium based on enzymatic catalysis
and AuNPs growth. Salmonella Typhimurium was sand-
wiched between two aptamers and labeled with catalase.
Catalase consumed H2O2 in solution, slowing down the
growth kinetics of AuNPs that induced AuNPs aggrega-
tion, whereas in the absence of the target, the reduction of
gold ions took place at a rapid rate due to the high concen-
tration of H2O2, leading to the formation of well-dispersed
and spherical nanoparticles. The absorbance at 550 nm
exhibited a linear correlation with S. Typhimurium con-
centrations in the range of 10 to 106 CFU/mL with a sat-
isfactory LOD of 10 CFU/mL. Similar approach was also
reported by Guo et al. (2020) in which S. Typhimurium
was labeled with catalase and the etching of gold nanorods
(AuNRs) was utilized for colorimetric signal output. Using
moving immuneMNPs for bacteria separation from a large
volume and click chemistry for signal amplification, this
biosensor allowed sensitive detection of S. Typhimurium
with a LOD of 35 CFU/mL in 3 hr. Recently, a colorimet-
ric sensor based on competitive binding of urease and bac-
terial cells toward antibody-modified silver nanoparticles
(AgNPs) was reported for S. Typhimurium detection with
a sensitivity limit of 100 cells/mL (Singh, Kakkar, Bharti,
Kumar, & Bhalla, 2019). Urease lost its catalytic activity
upon adhering to AgNPs, whereas in the presence of the
bacteria, AgNPs bound to the bacterial cells, rendering ure-
ase active in solution.
Though enzymes show an unparalleled advantage of

extremely high catalysis efficiencies, they are always
expensive and susceptible to harsh environmental condi-
tions. Since Fe3O4 nanoparticles were first reported to pos-
sess an intrinsic peroxidase mimetic activity in 2007 (Gao
et al., 2007), the enzyme mimetic activity of nanomateri-
als/hybrid materials has been explosively explored. Nano-
materials/hybrid materials with enzyme-mimicking activ-
ities have been incorporated into colorimetric biosensors
with improved stability, reproducibility, and reduced cost.
Fe-based nanomaterials, such as Prussian blue nanoparti-
cles, MNPs, ZnFe2O4-reduced GO nanostructures, and Fe-
based MOF with excellent peroxidase-mimicking activi-
ties, were adopted as novel nanozyme labels for Salmonella
detection (Cheng et al., 2019; Farka et al., 2018; Park, Jeong,
Kim, & Park, 2015; Wu, Duan, Qiu, Li, & Wang, 2017).

Furthermore, Zheng et al. (2020) labeled the captured
Salmonella cells with porous gold@platinum nanocata-
lysts for signal output via catalysis ofH2O2–TMB to achieve
sensitive detection of S. Typhimurium with a LOD of
17 CFU/mL and demonstrated its application in chicken
meat.
Colorimetric biosensors have attracted numerous atten-

tions for quantitative and semiquantitative detection of tar-
get bacteria due to their unique advantages of naked-eye
signal output. With the advance in image acquisition and
processing by smartphones in recent several years, this
type of biosensor holds great potential for in-field quan-
titation of Salmonella in the food supply chain. However,
some issues such as the stability of the sensors and the
interfering background color from food samples should be
addressed in future research.

3.2.2 SERS biosensors

SERS is a phenomenon of Raman scattering enhanced
by rough metal surfaces or nanostructures (Li, Zhang,
Ding, Panneerselvam, & Tian, 2017). Since first observed
on electrochemically roughened silver in the 1970s, it has
gained an explosion of interest for chemical and biological
detection with high sensitivity, low cost, multiplexing abil-
ity, and high speed (Fleischmann, Hendra, & McQuillan,
1974; Hakonen, Andersson, Schmidt, Rindzevicius, & Käll,
2015). SERS provides unique fingerprint spectra furnished
by molecular vibrations that can be used to characterize
a variety of targets (Pang, Yang, & He, 2016). Detection of
S. Enteritidis based on SERS technique was probably first
reported by Montoya, Armstrong, and Smith (2003), using
gold as SERS-active substrates. Generally, SERS biosensors
for Salmonella detection can be classified into two types:
label-free and label-based methods.

Label-free SERS biosensors
Label-free SERS biosensors along with whole-organism
fingerprint information and simplified procedures are
attractive for Salmonella detection. In order to improve the
detection sensitivity, various gold- and silver-based nano-
materials/hybrid materials were studied and applied to
SERS biosensors to provide field enhancement. For exam-
ple, Chen, Park, Huang, Zhao, and Kwon (2017) modified
aptamers on the silver nanorod array substrates for label-
free SERS detection of S. Typhimurium.However, the LOD
was still unsatisfactory (108 CFU/mL).

Label-based SERS biosensors
Despite the huge inherent advantages, label-free SERS
methods always show limitations of unsatisfactory sen-
sitivity and reproducibility. Label-based methods with
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improved detection performance also have been well
established. For example, a SERS aptasensor sandwiching
target pathogens between Au@Ag core/shell nanoparticle
substrates and X-rhodamine reporters was developed for
the detection of S. Typhimuriumwith a LODof 15CFU/mL
(Duan, Chang, Zhang, Wang, & Wu, 2016).
SERS tags/probes that contain metal nanostructures for

signal enhancement, biological molecules for recognition,
and Raman active dyes for signal output have gained
increasing interest in the fabrication of novel SERS biosen-
sors. One approach to construct such SERS tags is the
direct attachment of recognition elements and Raman
reporters on the surface of metal nanoparticles (Kearns,
Goodacre, Jamieson, Graham, & Faulds, 2017; Ko et al.,
2018; Ma et al., 2016; Ma, Xu, Xia, & Wang, 2018; Wang,
Ravindranath, & Irudayaraj, 2011). Zhang, Ma, et al. (2015)
used Raman molecule-modified AuNPs as Raman signal
probes and Fe3O4 magnetic AuNPs as capture probes to
simultaneously detect S. Typhimurium and S. aureus in
both buffer and pork samples with a LOD of 15 CFU/mL
for S. Typhimurium. Draz and Lu (2016) developed an
integrated assay that combined loop-mediated isother-
mal amplification (LAMP) with SERS through the use of
Raman active Au-nanoprobes to detect S. Enteritidis DNA
in both buffer and artificially contaminatedmilk products.
Target DNA was amplified by LAMP and then quantita-
tively detected by SERS using AuNPs modified with cya-
nine 5-labeled DNA as labels. The LOD of the developed
LAMP-SERS method was 66 CFU/mL, which is 100 times
more sensitive than the conventional PCR method.
One limitation of these SERS tags is their instability

when exposed to an unfriendly environment. In practice,
core–shell SERS tags that encapsulate nanoparticle aggre-
gates andRaman reportermolecules into a protective silica
shell, namely, nanoaggregate-embedded beads (NAEBs),
can significantly improve the stability (Tay et al., 2012).
Lin et al. (2014) combined the NAEBs-based SERS method
with a microfluidic dielectrophoresis device for detection
of SalmonellaCholeraesuis andNeisseria lactamicawithin
2 hr. To further improve the detection sensitivity, an evapo-
ration device that applied ionicwind flows to evaporate the
droplet was developed for concentration of NAEBs-bound
Salmonella. Single CFU of Salmonella could be detected
when 30 μL of sample volume was used (Su et al., 2019).
Many studies indicate that SERS biosensors are consid-

ered as promising tools for on-line detection of pathogenic
bacteria. Although the label-free one is less sensitive and
susceptible to the interference from complex food matri-
ces, the label-based one enables highly sensitive detection
of the target bacteria via reporting the SERS spectra from
the active labels. Even with these advances, it is still very
challenging to apply SERS biosensors as routine detection
tools for Salmonella in food. Future workmay focus on the

exploitation of high-performance SERS substrates, opti-
mization of the fabrication and measurement conditions,
and combination of the SERS technique with advanced
sample pretreatment methods such as microfluidics, IMS,
and so on, to facilitate its wide applications in actual
foodstuffs.

3.2.3 Fluorescent biosensors

Fluorescent biosensors with unique advantages of satis-
factory sensitivity, high-throughput, fast response, ease of
automation, and reduced background signals are one of the
most prevalent types of biosensors for Salmonella detec-
tion (Bhardwaj et al., 2017). Currently, different sensing
modes have been developed for Salmonella detection with
excellent detection performance.

Fluorescent biosensors based on a sandwich format
Fluorescent biosensors based on a sandwich format are
most commonly reported in the literature. Particularly,
the simultaneous use of quantum dots (QDs) as fluores-
cent labels and IMBs as separation tools has obtained
tremendous interest due to the distinctive optical prop-
erties of QDs (e.g., broad excitation spectra; narrow,
size-tunable and symmetric emission; improved bright-
ness; long fluorescence lifetime; and good photosta-
bility) and the capture, concentration, and separation
abilities of IMBs (Moro, Turemis, Marini, Ippodrino,
& Giardi, 2017). Early in 2005, our group reported a
sandwich-type biosensor for detection of S. Typhimurium
in chicken carcass wash water based on IMBs and
QDs (Yang & Li, 2005). In this approach, Salmonella
were first separated by antibody-functionalized IMBs
and labeled with biotin-conjugated secondary antibodies.
Streptavidin–QDs were then added and reacted with the
secondary antibody, resulting in the formation of sandwich
complexes. This biosensor showed a LOD of 103 CFU/mL
with a linear range from 103 to 107 CFU/mL. Since then,
we have presented a series of improved assays for simul-
taneous detection of Salmonella and other foodborne
pathogens, reaching LODs ranging from 20 to 104 CFU/mL
in pure culture and different food samples (Wang, Li,
Wang,& Slavik, 2011; Xu et al., 2015; Yang&Li, 2006). Simi-
lar researchwas also conducted to simultaneously detect S.
Typhimurium, Shigella flexneri, and E. coli O157:H7 using
QDs and silica-coated γ-Fe2O3 MNPs that could detect S.
Typhimurium at 6.0 × 103 CFU/mL (Zhao et al., 2009).
Kuang et al. (2013) simplified the manipulations by cou-
plingmagnetic capture andQDs labeling into one stepwith
less assay time of 30min. Later, Yin et al. (2016) highlighted
the elimination of the blocking effect of IMBs andmultiple
washing steps to develop a reverse assaying strategy using
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the surplus QDs–antibody conjugates for signal output.
The number of QDs–antibody probes added to the solution
was kept constant and the remaining probes in the solu-
tion after removing the QDs–target–IMBs conjugates were
used for fluorescence detection. This assay showed a LOD
of 60 CFU/mL for S. enterica with detection time of 1 hr.
Moreover, with the rapid development of nanomaterials,
other fluorescent labels, such as upconversion nanoparti-
cles (UCNPs), fluorescent nanospheres/microspheres, and
time-resolved fluorescence nanoparticles, also have been
incorporated into sandwich format–based biosensors for
Salmonella detection (Duan et al., 2012; Wang, Zheng,
et al., 2019; Wang et al., 2016; Wen et al., 2013).

Fluorescent biosensors based on Förster resonance
energy transfer
Although well developed, the sandwich format–based
methods always need multiple washing steps. Washing-
free methods would be far more attractive. Among them,
Förster resonance energy transfer (FRET) methods are
promising, which are based on energy transfer from energy
donors to acceptors via dipole–dipole interaction when
these two species are in close proximity (Muhr et al., 2017).
In FRET biosensors, “turn-off” mode, relying on sand-
wich binding events to dampen the fluorescent signals, has
been demonstrated for the detection of Salmonella. Ma,
Li, Xia, and Wang (2014) utilized FRET between UCNPs
and AuNPs to determine the presence of target DNA in S.
Typhimurium. Both the UCNPs andAuNPsweremodified
with ssDNA complementary to the target DNA and served
as energy donor and acceptor, respectively. In the presence
of the target DNA, a sandwich complexwas formed, result-
ing in the occurrence of FRET. The proposed biosensor
achieved a LOD of 3 CFU/mL under the optimal condi-
tions. Similar strategy was proposed for Salmonella invA
gene detection using QDs as fluorescent donor and GO as
quencher with a LOD of approximately 4 nM in 20 min
(Guo, Chan, Chen, & Zeng, 2017).
Compared with fluorescence “turn-off,” the “turn-on”

mode is more preferable due to a better signal-to-noise
ratio in a dark background (Cao, Guo, & Wang, 2017).
Duan, Ning, Song, and Deng (2014) used carboxyfluores-
cein (FAM) andGOas FRETpair to detect S. Typhimurium
with a LOD of 100 CFU/mL. FAM-labeled aptamers were
absorbed onto GO surface through π–π stacking, resulting
in the quenching of FAM emission. In the presence of S.
Typhimurium, the aptamer preferred to bind to its target
and released fromGO, leading to the restoration of fluores-
cence. In another approach, UCNPs and AuNRs were cho-
sen as a FRET pair, in which the electrostatic interaction
between aptamer-modified UCNPs and AuNRs shorted
the distance of these two nanomaterials, triggering FRET,
whereas the added S. Typhimurium repelled the UCNPs–

aptamers from the AuNRs, resulting in the restoration of
fluorescence (Cheng, Zhang, Zhang, Wang, & Chen, 2017).
In order to improve the detection sensitivity, nucleases

are commonly incorporated into the detection process.
Song, Li, Duan, Li, and Deng (2014) used DNA nicking
endonuclease to recycle nucleic acid hybridization and
enzymatic cleavage, leading to the cleavage of numerous
molecular beacons. The fluorescence of carbon nanopar-
ticles modified on molecular beacons that was initially
quenched by black hole quencher 1 could be restored and
greatly amplified. The detection was finished within 2 hr
with LODs of 102 and 1.5 × 102 CFU/mL for S. Enteri-
tidis in water and milk, respectively. In another research,
deoxyribonuclease I was used for recycling the target and
continuously releasing FAM-labeled short sequences from
nanographite surface with a LOD of 50 CFU/mL for S.
Enteritidis detection in milk (He et al., 2017).
Fluorescent biosensors have been enormously exploited

for Salmonella detection in food. They also hold great
potential to be extended to in-field applications, par-
ticularly with the development of portable fluorescence
detectors. However, their detection performance is always
restricted by the inherent photophysical drawbacks of fluo-
rophores such as instability in complex matrices and rapid
photobleaching. The emerging of novel fluorescent mate-
rials would be largely beneficial for the fabrication of flu-
orescent biosensors with higher stability, reliability, sensi-
tivity, and accuracy.

3.2.4 SPR biosensors

SPR biosensors monitor the interaction between targets
and ligands based on the changes in refractive index (Zhou
et al., 2019). They have attracted extensive attention due to
their simplicity, low cost, and most importantly, capability
for label-free monitoring of the binding events in real time
(Lan, Yao, Ping, & Ying, 2017; Mauriz, García-Fernández,
& Lechuga, 2016). Large targets, such as Salmonella, with
high molecular weight (>10 kDa) can be directly detected
(Mahmoudpour et al., 2019).
The formation of well-ordered sensing interfaces with

oriented immobilization of bioreceptors on a SPR sur-
face is essential for better sensitivity. Covalent binding
of recognition elements to gold chips/previously chemi-
cally modified substrates based on Au–S bond, amine cou-
pling, and glutaraldehyde crossing-linking was most com-
monly employed (Koubová et al., 2001; Singh, Verma, &
Arora, 2015; Waswa, Debroy, & Irudayaraj, 2006; Zhang
et al., 2014). For example, Makhneva, Farka, Skládal, and
Zajíčková (2018) deposited plasma polymers onto the gold
surface to provide an excellent platform for stable immo-
bilization of antibodies using glutaraldehyde activation. A
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LOD of 105 CFU/mL with analysis time of 10 min was
achieved for Salmonella detection.
Except covalent binding, antibody binding proteins,

which can selectively capture the Fc region of antibod-
ies, also play a vital role in antibody immobilization for
Salmonella detection (Nguyen, Yi, Woubit, & Kim, 2016;
Oh, Kim, Park, Lee, & Choi, 2004). The third efficient way
to control the orientation of bioreceptors is biotin–avidin
binding. A biotinylated single-stranded oligonucleotide
probe that could target the invA gene of Salmonella was
designed and immobilized onto a streptavidin-coated dex-
tran sensor surface. The invA genes isolated from bac-
terial cultures were amplified by a modified semi-nested
asymmetric PCR and hybridized with the complementary
probes on the sensor surface to generate a SPR response.
This genosensor had the ability to detect Salmonella as low
as 102 CFU/mL within 4.5 hr (Zhang, Yan, et al., 2012).
The label-free methods are simple and rapid, but

they are always less sensitive. Incorporation of metal-
lic nanoparticles or other materials into a SPR biosen-
sor can further improve the detection performance due
to their large molecule weights and/or high refractive
index values (Wang, Munir, et al., 2010). Lei et al. (2015)
used DNA probes containing streptavidin aptamers for
both target recognition and signal amplification that could
detect Salmonella as low as 60 CFU/mL. Target DNA was
sandwiched between DNA probe-1 and probe-2. Then the
probe-2 that contained a segment of streptavidin aptamer
bound to streptavidin to further amplify the biosensor
response. Melaine, Saad, Faucher, and Tabrizian (2017)
reported a SPR imaging biosensor for multiplex detec-
tion of bacterial 16S rRNA of Pseudomonas aeruginosa, S.
Typhimurium, and Legionella pneumophila using AuNPs
for signal amplification with a LOD of 10 pg/mL in less
than 1 hr. Antibody-functionalized MNPs serving as both
separation tools and SPR labels were incorporated into a
sandwich format SPRbiosensorwith a LODof 14CFU/mL,
which gave four orders of magnitude improvement in the
sensitivity in comparison with the direct detection for-
mat (Liu et al., 2016). It is worth mentioning that Farka,
Jur ̌ík, Pastucha, and Skládal (2016) innovatively proposed
a SPR-based biosensor based on biocatalyzed precipitation
that claimed to be able to detect S. Typhimurium with
LODs of 100 and 103 CFU/mL in buffer and milk pow-
der, respectively. Salmonella was captured by the antibod-
ies immobilized on SPR surface, followed by the binding
of detection antibodies conjugated with HRP. Then HRP
catalyzed the conversion of 4-chloro-1-naphthol into insol-
uble benzo-4-chlorocyclohexadienone, resulting in a sig-
nificant enhancement of SPR signals. The sensitivity of
this method was increased 40 times in comparison to the
label-free method.

In order to improve the detection performance in
actual food samples, a low-fouling SPR biosensor was
proposed for E. coli O157:H7 and Salmonella detec-
tion based on poly(carboxybetaine acrylamide) brushes
and AuNPs (Vaisocherová-Lísalová et al., 2016). The
poly(carboxybetaine acrylamide) brushes provided both
surface resistance to fouling and functional capabilities.
The LODs were found to be 7.4 × 103 and 11.7 × 103
CFU/mL for Salmonella in cucumber and hamburger
extracts, respectively.
Comparedwith other biosensors, SPR biosensors enable

real-time monitoring of the binding of target bacteria
with less reagent consumption. They are probably the
most successful examples of commercialized biosensors
for Salmonella detection in food. In spite of some portable
SPR biosensors emerging, however, most of them are still
restricted to the laboratory. Furthermore, their LOD and
sensitivity for Salmonella detection in food samples should
be further improved.

3.3 Piezoelectric biosensors

Piezoelectric biosensors are mass-sensitive devices that
incorporate an oscillating piezoelectric resonator for signal
transducing (Su et al., 2013). Quartz crystal microbalance
(QCM) is the most commonly used piezoelectric device
based on the principle that the shifts of quartz crystal res-
onant frequency are proportional to the mass deposited on
the chip surface (Zhu et al., 2015). They can directly mon-
itor the binding events in a label-free way with real-time
signal output, simplified detection procedure, low cost,
and potential portability (Jiang et al., 2011). Table 4 (2015
to 2020) and Table S3 (before 2015) summarize piezoelec-
tric biosensors for Salmonella detection. An example of
QCM biosensor for Salmonella detection is illustrated in
Figure 4.
Wang, Wang, et al. (2017) immobilized aptamers,

selected via SELEX, with high affinity and specificity
toward S. Typhimurium onto a QCM surface to fabricate
a label-free biosensor for S. Typhimurium detection with a
LOD of 7.9 × 103 CFU/mL, in an assay time less than 1 hr.
The results indicated that QCM acted well in both aptamer
selection andpathogendetection. To improve the detection
sensitivity, Ozalp, Bayramoglu, Erdem, and Arica (2015)
incorporated magnetic separation into a QCM biosensor
for sensitive and specific detection of S. Typhimurium
with a LOD of 100 CFU/mL. Salmonella were separated
and enriched by aptamer functionalized magnetic beads
from milk samples, and the captured cells were eluted
and anchored onto an aptamer-based QCM surface for
detection.
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TABLE 4 Summary of the piezoelectric biosensors reported for Salmonella detection (2015 to 2020)

Serotype Label Bioreceptor Application

Linear
detection
range

Limit of
detection

Assay
time Reference

S. Typhimurium – Aptamer Milk 102 to 4 × 104

CFU/mL
100 cells – Ozalp et al. (2015)

S. Typhimurium – Bacteriophage – – – – Olsson et al. (2016)
S. Typhimurium – Aptamer – 7.9 × 102 to 7.9 ×

106 CFU/mL
7.9 × 103

CFU/mL
<1 hr Wang, Wang, et al.

(2017)
S. Typhimurium – Antibody Chicken

meat
1 to 103 CFU/mL <1 CFU/mL in

chicken
<4 hr Fulgione et al.

(2018)
S. Typhimurium – Antibody – 105 to 108

CFU/mL
105 CFU/mL 10 min Makhneva et al.

(2018)

F IGURE 4 A label-free quartz crystal
microbalance biosensor for Salmonella
detection (Wang, Wang, et al., 2017).
Reprinted with permission from Elsevier B.V.

Although QCM biosensors can directly measure the
binding events without any labels, they always exhibit
unsatisfactory sensitivities. For QCM, a change in fre-
quency of 1 Hz is generally equivalent to a 10−9 g mass
change (Shen et al., 2011). Therefore, it is definitely not rea-
sonable for a single Salmonella bacterium (∼10−12 g) (Zhu,
Shih, & Shih, 2007) to trigger obvious shifts in frequency
for a QCM biosensor. Consequently, mass-amplified QCM
biosensors with improved sensitivities are investigated.
A QCM biosensor coupled with AuNPs as mass ampli-
fiers was developed for real-time and sensitive detection of
S. Typhimurium (Salam, Uludag, & Tothill, 2013). Three
detection approaches, that is, direct, sandwich without
AuNPs, and sandwich with AuNPs amplification assays,
were compared in this work. The results showed that the
sandwich formatwithAuNPs amplifier exhibited the high-
est sensitivity with a LOD of 10 to 20 CFU/mL, compared
with those of direct (1.83 × 102 CFU/mL) and sandwich
without AuNPs amplification (1.01 × 102 CFU/mL) assays.
Though many QCM approaches that solely measure the

changes in resonant frequency (Δf) have been demon-
strated for Salmonella detection, in some cases, they may
not be robust biosensing platforms for sensitive quantita-

tion. The Sauerbrey equation is valid only to rigid, uniform,
and thin films (Chen, Penn, & Xi, 2018). For Salmonella
biosensors, the soft layer (e.g., the bacterial cells) on the
sensor surface will not fully couple to the crystal oscilla-
tions, leading to the dampening of the oscillation (Poitras
&Tufenkji, 2009). As a result, the adheredmassmay not be
determined accurately when only Δf is measured. There-
fore, quartz crystal microbalance with dissipation moni-
toring (QCM-D) or resistance measurement will be more
robust for biosensing of Salmonella because it can mea-
sure the changes in both frequency and energy dissipation
(ΔD) or motional resistance (ΔR), corresponding to the
changes in mass and viscoelastic properties of the adhered
layer (Yongabi et al., 2020). Though Su and Li (2005a)
reported a QCM biosensor for S. Typhimurium detection
with simultaneous measurements of Δf and ΔR as early as
2005, unfortunately, relatively few efforts have been made
to adapt QCM-D or QCMwith resistancemeasurement for
biosensing of Salmonella.
QCM-D and SPR are known independently as surface-

sensitive analytical techniques with real-time and in situ
detection capabilities. They have many features in com-
mon. Both of them are applicable for direct detection of
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Salmonella in a label-free manner. Generally, SPR has a
higher intrinsic mass sensitivity (Su & Zhang, 2004). How-
ever, as summarized in Tables 3 and 4, QCM biosensors
usually exhibit comparable or lower LODs for label-free
detection of Salmonella. This may be ascribed to the differ-
ence in the effective sensing thickness of aQCMsensor (up
to several micrometers) and a SPR sensor (several hundred
nanometers) (Su & Li, 2005b). Moreover, QCM may gain
extra sensitivity because it measures the wet mass (includ-
ing the mass of solvent between molecules) (Su, Wu, &
Knoll, 2005). Both SPR and QCM-D can be applied in sur-
face analysis to monitor specific interactions. SPR detects
the changes on refractive index and can provide informa-
tion about the changes on dry mass, thickness, and so on
(Xing et al., 2017). And QCM-D measurements can reflect
the changes on wet mass and viscoelastic properties of the
adhered materials (Oh & Borrós, 2016). However, it is still
a big challenge for SPR and QCM biosensors to be used
outside of the lab as they are highly sensitive to external
disturbances.

3.4 Biosensors with other transducing
methods

Recently, some novel signal-transducing mechanisms are
also emerging for Salmonella detection.Withmagnetic sig-
nal output,magnetic biosensors, especiallymagnetic relax-
ation switching (MRS) biosensors with simple operation
and high sensitivity, have been demonstrated to be use-
ful for Salmonella detection (Jin, Li, et al., 2020; Wang,
Zhang et al., 2015; Wu et al., 2020; Zou et al., 2019). Chen,
Xianyu, et al. (2015) integrated MRS and magnetic sepa-
ration into one method for one-step detection of S. enter-
ica. They used lager magnetic beads for separation and
the smaller ones for signal output. This MRS biosensor
could detect 100 CFU/mL of S. enterica in spiked milk
samples within 30 min. To further improve the sensitiv-
ity and stability, Wang, Xianyu, et al. (2019) employed
Mn(VII)/Mn(II) interconversion into a MRS biosensor. It
had low background signals because Mn(VII) ion has no
T2 relaxation rate (R2 = 1/T2). Then the ALP labeled on the
captured Salmonella cells catalyzed the hydrolysis of ascor-
bic acid phosphate into ascorbic acid to reduce Mn(VII)
into Mn(II), resulting in a strong R2 signal output. This
biosensor showed a LOD of 20 CFU/mL for Salmonella
detection with recoveries ranged from 89.3% to 103.6% in
milk samples.
Photothermal biosensors based on the photothermal

effect of nanomaterials have been recently developed for
Salmonella detection. Zhang, Wang, et al. (2018) inte-
grated capture, photothermal detection, and sterilization
of S. Typhimurium into one method through the use of

immune-magnetic nanomaterials. After removing the free
particles throughmembrane filtration, themagnetic nano-
materials on Salmonella that were trapped on the mem-
branewere irradiated by a laser pen and produced a change
in temperature. Using a thermal sensor to measure the
change of temperature, this biosensor achieved a LOD of
300 CFU/mL. To further simplify the detection device,
Du, Wang, Liu, Xu, and Zhang (2019) modified the mer-
cury head of a common glass thermometer with antibod-
ies to capture the target bacteria. After GO labeling and
laser irradiation, the change of temperature was directly
detected by the thermometer. The entire detection could be
finished in 15minwith a LOD estimated to be 103 CFU/mL
for S. Typhimurium. The authors also demonstrated that
the matrix effects from tap water, milk, and grape juice
almost had no influence on the detection.
Moreover, taking advantage of the produced oxygen that

forms air gap in the capillary, Hou, Cai, Zheng, and Lin
(2019) used electrical voltage as signal output for rapid
detection of S. Typhimurium. The captured Salmonella
was labeled with polystyrene microspheres modified with
catalases. Catalases catalyzed the decomposition of hydro-
gen peroxide to produce oxygen and form air gap in the
capillary, resulting in the change of electrical voltage. This
biosensor was able to detect S. Typhimurium within 2 hr
with a LOD of 33 CFU/mL. Wei et al. (2018) labeled target
pathogens with platinum nanoparticles to generate oxy-
gen and measured the pressure changes in a bar-chart
SpinChip, achieving a LOD of 6.7 CFU/mL for S. enterica.

4 RECENT TRENDS IN BIOSENSOR
DEVELOPMENT FOR DETECTION OF
Salmonella IN FOOD

Although multitudinous biosensors have enabled rapid
and sensitive detection of Salmonella in food, their in-
field applications are still limited by the unsatisfactory
stability and reproducibility, high cost, and the necessary
instrumentation. In recent years, the emerging of multi-
functional nanomaterials and interdisciplinary advanced
technologies offers a new and important direction for the
development of on-site applicable and end user-accessible
biosensors for rapid and sensitive detection of Salmonella
in food.

4.1 Nanomaterial-based biosensors

Nanomaterials with large surface area, remarkable
optical, electrical, mechanical, and thermal properties
(Kurbanoglu, Ozkan, & Merkoçi, 2017; Maduraiveeran,
Sasidharan, & Ganesan, 2018) have been extensively
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F IGURE 5 Illustration of the integrated nanochannel electrode-based biosensor for Salmonella detection (Zhu et al., 2020). Reprinted
with permission from American Chemical Society

employed for the fabrication of novel biosensors. They
are incorporated into biosensor design for better sensing
performance, such as the improvement in sensitivity. In
some cases, they also endow biosensors with extra features
such as biocompatibility and magnetic properties (Silva
et al., 2018). Nanomaterials have been applied to almost all
the types of biosensors with various functions. Table 5 lists
some common nanomaterials that have been extensively
and successfully applied for the construction of Salmonella
biosensors, includingMNPs, AuNPs, QDs, UCNPs, carbon
nanomaterials, and transition metal dichalcogenides
(TMDs). Their properties and features, as well as the
roles in biosensor fabrication, are also systematically
summarized.
Moreover, we have also witnessed the rapid develop-

ment of some new nanomaterials for Salmonella biosens-
ing applications. Qiu et al. (2019) prepared an ultrathin
MOFnanosheet based on a surfactant-assistedmethod and
demonstrated its feasibility as a FRET quencher for multi-
plex detection of three pathogenic genes (S. enterica, Lis-
teria monocytogenes, and Vibrio parahaemolyticus). Due to
the high surface area and numerous accessible active sites
on sheet surface that contribute to high quenching effi-
ciency and reduced noise, this biosensor allowed sensitive
detection of Salmonella genes at 28 pM.
Recently, Zhu et al. (2020) proposed a facile biosens-

ing method for S. Typhimurium detection based on an
integrated nanochannel electrode for both separation and
detection. As illustrated in Figure 5, Salmonellawas specif-
ically captured by immune MNPs. Then the mixture of
free immune MNPs and immune MNPs–target complexes
was transferred to the surface of the nanochannel elec-
trode. The free immune MNPs with smaller size than the

pore size of the nanochannel penetrated through the chan-
nel, whereas the immune MNPs–target complexes were
trapped. Finally, electrochemical impedance spectroscopy
was employed for Salmonella detection with a LOD of 50
CFU/mL.
Though nanomaterials have been explosively and suc-

cessfully employed in Salmonella biosensors for signal
generation and/or amplification, several issues including
their aggregation, heterogeneity, and instability should be
explicitly solved in subsequent studies.

4.2 Aptamer-based biosensors

Aptamers are recognized as “chemical antibodies” with
unique advantages of high stability, ease of reproduction,
and easy modification (Sabet, Hosseini, Khabbaz, Dad-
mehr, & Ganjali, 2017; Tan, Zhao, Du, Gan, & Quan, 2016).
In most cases, they can replace antibodies for the fabrica-
tion of different types of biosensors for Salmonella detec-
tion. Moreover, they offer more flexibility due to their spe-
cific 3D structures. In this section, aptamers functioning
differently from antibodies are discussed.
Aptamer-based FRET biosensors have been frequently

reported for Salmonella detection as aptamers can spon-
taneously adhere to quencher materials via electro-
static interaction or π–π stacking. In these biosensors,
fluorophore-labeled aptamers are adsorbed on quencher
surface and thus bring the energy donor and acceptor
in close proximity, leading to fluorescence quenching,
whereas in the presence of the analytes, aptamers pre-
fer to bind to their targets, resulting in the dissocia-
tion of aptamers from the quencher and the fluorescent
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emission is restored. These strategies are benefitted from
the development of novel nanomaterials that can serve
as quenchers for the aptamer-tagged fluorophore, such as
GO, MOF, MnO2 nanosheets, TMDs, and their composites
in recent years. Satisfactory LODs down to 100 CFU/mL
were obtained for Salmonella detection with different flu-
orescent labels and quenchermaterials (Chinnappan et al.,
2018; Duan, Gong, Wang, & Wu, 2016; Duan et al., 2014).
As single oligonucleotides, aptamers can hybridize with

their cDNA. Thus, displacement methods based on the
affinity difference of aptamers toward cDNA and tar-
get analytes were reported (Wu, Duan, Shi, Fang, &
Wang, 2014). MNPs–UCNPs probes were fabricated via
DNA hybridization between cDNA modified on MNPs
and aptamers conjugated on UCNPs to obtain background
luminescence. With higher affinity toward the aptamers,
target bacteria induced the dissociation of some UCNPs
from MNPs–UCNPs probes, resulting in decreased lumi-
nescent emission. With this methodology, they obtained
LODs of 25, 10, and 15 CFU/mL for S. aureus, V. para-
haemolyticus, and S. Typhimurium, respectively.
Due to their specific 3D structures, conformational

changes of aptamers may occur upon target binding.
Bayramoglu et al. (2018) reported an aptamer-gatedMCM-
41 silica system to detect S. enterica in milk samples.
Both the magnetic Fe3O4@SiO2@poly(glycidyl methacry-
late) and MCM-41 silica particles were modified with spe-
cific aptamers. Salmonella enterica was captured and sep-
arated by the Fe3O4@SiO2@poly(glycidyl methacrylate),
andmixedwith the aptamer-gatedMCM-41 silica nanopar-
ticles, resulting in the conformational changes of aptamer
gates to release previously loaded fluorophore molecules
out of the MCM-41 particles. As low as 103 CFU/mL of
S. enterica in milk samples could be detected without any
culturing.
Despite being regarded as promising alternatives to anti-

bodies, the application of aptamers for Salmonella detec-
tion is still challenging due to their relatively poor repro-
ducibility in testing bacterial cells. Whole-cell SELEX has
played an important role in the selection of Salmonella
aptamers. Considering that bacteria may have different
membrane properties in difference phases (Zou, Duan,
Wu, Shen, & Wang, 2018), using Salmonella cells at differ-
ent growth stages for aptamer selection may help improve
the reproducibility. Moreover, because “bacteria” binding
aptamers are likely specific to some entities on cell sur-
face (Wu, Belmonte, Sykes, Xiao, & White, 2019), a deep
understanding of these entities may also contribute to
higher reproducibility of Salmonella aptamers. Further-
more, most of Salmonella aptasensors are still in a proof-
of-concept stage, and the applications for real food samples
should be further evaluated.

4.3 Microfluidics-based biosensors

Integrating several laboratory functions into a minia-
turized system is highly desirable for biosensors to be
used on site. Microfluidics-based biosensors consisting
of microchannels for fluids transportation with neces-
sary components for immunoassay have received increas-
ing attention (Bange, Halsall, & Heineman, 2005). Such
devices are able to precisely control the flow of fluids in
microchannels through pressure, electrokinetic, or other
driving forces, and perform full analysis including sam-
pling, separation, mixing, and detection in a single chip
(Luka et al., 2015; Prakash, Pinti, & Bhushan, 2012). Ben-
efiting from the advantages of microfluidics, they have
some unique features such as capacities of automation
and miniaturization, high-throughput analysis, reduced
reagent consumption, less processing time, andhigh porta-
bility (Choi, Goryll, Sin,Wong, & Chae, 2011; Derkus, 2016;
Sun, Xianyu, & Jiang, 2014; Weng & Neethirajan, 2017).
At present, optical and electrochemical detection

are often integrated to microfluidic devices to develop
microfluidics-based biosensors for Salmonella detection
(Ghosh Dastider, Barizuddin, Yuksek, Dweik, & Almasri,
2015; Kim, Moon, Moh, & Lim, 2015; Li, Li, et al., 2017;
Lin et al., 2014; Singh et al., 2018; Thiha et al., 2018). For
example, Guo et al. (2015) designed a magnet-controlled
microfluidic device that combined magnetophoretic
separation with magnetic trap for selective and sensitive
detection of S. Typhimurium in milk. The microfluidic
chip consisted of a separation zone with nickel wires
and a detection zone with nickel patterns. The target
pathogens captured by immunomagnetic nanospheres
were separated using a lateral magnetic force and later
trapped between the nickel patterns as a result of the
strong magnetic force between these nickel patterns.
After labeled with QDs, S. Typhimurium with concen-
tration of 5.4 × 103 CFU/mL could be detected in milk
samples.
Recently, Jasim et al. (2019) reported a microfluidic

impedance biosensor for rapid and simultaneous detec-
tion of different Salmonella serogroups in poultry prod-
ucts. As illustrated in Figure 6, the device consists of three
microchannels, and each one involves a focus region to
concentrate samples and a sensing region for bacterial cells
detection. Poultry samples were injected into the biosen-
sor via the main antigen inlet. Then the bacterial cells
were focused into the centerline of the microchannel and
pushed toward the sensing region using positive dielec-
trophoresis force. Finally, the binding of Salmonella to
immobilized antibodies was detected using an impedance
analyzer. This biosensor allowed sensitive detection of
Salmonella at 7 cells/mL in 40 min.
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F IGURE 6 Illustration of themicrofluidic biosensor for Salmonella detection (Jasim et al., 2019). Reprintedwith permission fromElsevier
B.V.

4.4 Portable biosensor instruments

In view of in-field applications, it is necessary to integrate
the biosensor into a portable device that has minimized
size, light weight, and friendly interactive interface. Up
to now, several efforts have been undertaken to construct
portable biosensor instruments for Salmonella detection
(Fronczek, You, & Yoon, 2013; Wen, Wang, Sotero, & Li,
2017).
A highly automated instrument system that consisted

of a light-emitting diode light source, a spectrometer, and
software based on LabVIEW was designed for rapid and
high-throughput detection of foodborne pathogens (Lu,
Zhang, et al., 2017). Integrating this portable device with
fluorescent biosensing methodology, blind, in-field, and
simultaneous detection of E. coli O157:H7, L. monocyto-
genes, and S. Typhimurium in different foodstuffs was
accomplished in three different cities of China (Xu, Lu,
et al., 2017). This portable fluorescent biosensing system
produced comparable results with the conventional cul-
ture plating method in less than 60 min, demonstrating
its feasibility for in-field and rapid detection of multiplex
pathogens in real food samples. Such portable biosensors
that enable rapid and in-field measurement of bacterial
cells are in great demand as a significantly important ele-
ment in building a fast-responsive and effective pathogen
alert system for food safety.

4.5 Smartphone-based biosensors

Equipped with build-in function modules such as opera-
tion systems, internalmemory, high-quality cameras, com-
munication modules, and GPS modules, smartphones can
be converted into multifunctional sensing platforms for
portable and in-field detection (Lu, Shi, & Liu, 2019). In
recent years, they have gained ever-increasing interest to
be integrated into Salmonella biosensors as they are more

accessible and cheaper than laboratory devices (Roda et al.,
2016).
In most cases, smartphones are integrated into

optical biosensing systems, taking advantages of the
embedded high-resolution camera. Especially, smart-
phones integrated with microfluidic biosensors endow
great potential for in-field detection. Park, Li, McCracken,
and Yoon (2013) reported a smartphone-based sensor
for Salmonella detection on a paper microfluidic device.
The system comprised two iPhone 4 smartphones. One
was used as a light source, and the other was adopted as
an image detector. The extent of immunoagglutination
of polystyrene submicroparticles induced by antigen–
antibody reaction was quantified by evaluating the
Mie scattering from the digital images. The LOD for S.
Typhimuriumwas found to be 102 CFU/mL. Furthermore,
detection of Salmonella using a single smartphone under
ambient light was also demonstrated.
Recently, Wang, Zheng, et al. (2019) established a

smartphone-based fluorescent microscopic system and
combined it with amicrofluidic biosensor for online count-
ing of Salmonella. As illustrated in Figure 7, the sys-
tem is composed of a light source for fluorescent exci-
tation, a microscope for optical amplification, and an
APP for video processing. Salmonella were captured by
immuneMNPs and labeledwith fluorescentmicrospheres.
Then the labeled bacterial cells were injected into a
microfluidic chip. Using the fluorescent microscopic sys-
tem to monitor the fluorescent spots and the smartphone
APP for video processing, this biosensor allowed on-line
and sensitive detection of Salmonella with a LOD of
58 CFU/mL.
As discussed, smartphone facilitates simple and

low-cost detection. Due to unparalleled availability,
smartphone-based biosensors will in return boost the
development of biosensing technology to be widely
applied in Salmonella test, especially in the remote
area.
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F IGURE 7 Illustration of the
fluorescent biosensor based on smartphone
video processing for Salmonella detection
(Wang, Zheng, et al., 2019). (a) Principle of
the smartphone-based biosensor for
Salmonella detection and (b) structure of the
fluorescent microscopic system. Reprinted
with permission from Elsevier B.V.

4.6 Commercialized Salmonella
biosensors

Commercialization is the final goal of the development
of Salmonella biosensors to be accessible to end users.
Table 6 summarizes some commercialized biosensors for
Salmonella detection in food.
Probably the most successfully commercialized applica-

tions are the SPR-type biosensors. One example is Biacore
Q100 system (formerly Biacore AB, now part of GEHealth-
care Sciences, Marlborough, MA, USA) that can provide
high-throughput food safety analysis required inmeat pro-

duction. In combination with the Biacore HerdSense™
screening assays, this system enables serological screen-
ing of pathogens including Salmonella in pork. Currently,
a number of SPR biosensors are available from commercial
companies including GE Healthcare Sciences, Biosensing
Instrument, Inc. (Tempe, AZ, USA), BioNavis, Ltd. (Tam-
pere, Finland), IBIS Technologies, B.V. (Enschede, The
Netherlands), Bio-Rad Laboratories, Inc. (Hercules, CA,
USA), and Horiba, Ltd. (Kyoto, Japan). However, these
SPR platforms are always designed for universal appli-
cations, and special sensor chips for Salmonella detec-
tion need to be customized. Furthermore, they are less
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automated and always restricted to the use in analytical
laboratories.
In order for in-field applications, some transportable

biosensors for Salmonella detection also have been
launched. The RAPTOR™ (Research International, Inc.,
Monroe, WA, USA) with a physical size of 28 cm (L) ×
17.3 cm (W) × 20.5 cm (H) and weight of 6.45 kg is
a portable, automatic, and self-contained immunoassay-
based biosensor that integrates optics, fluidics, electron-
ics, and software into one compact system. It enables
rapid detection of toxins and bacteria including Salmonella
in 10 to 15 min. However, the LOD of this biosensor is
20,000 CFU/mL for S. Typhimurium so that extra pre-
enrichment of the bacteria prior to detection may be nec-
essary to detect Salmonella with lower concentrations.
Zephyr Pathogen Identifier and PathSeneors Navigator
(PathSensors, Inc., Baltimore, MD, USA) are two biosens-
ing systems based on the Cellular Analysis and Notifica-
tion of Antigen Risks and Yields (CANARY) technology
from the MIT Lincoln Laboratory. These two methods can
detect target pathogens such as Listeria and Salmonella
with PCR levels of sensitivity and specificity. For the
Zephyr Pathogen Identifier, test analysis can be finished
once the sample is in the instrument in less than 2 min to
results. And the Navigator takes 90 min to run but it will
test 96 samples at a time. For these two instruments, nec-
essary manual operations such as sample preparation and
bacteria incubation are still required to detect an extremely
low bacteria concentration (1 CFU), which may take 18 to
24 hr. Early Warning™ Biohazard Water Analyzer (Early
Warning, Inc., Montreal, Quebec, Canada) is a fully auto-
mated biosensor that integrates an ultrasensitive electro-
chemical biosensor with automatic sample pretreatment
components. It can automatically detect 1 cell per 100 mL
of bacterium in water and get test results and pathogen
alerts in 2 to 3 hr. Due to a different set of specific DNA
probes on each working electrode, this biosensor can test
for up to 25 specific bacteria, protozoa, and virus, including
Salmonella at the same time. However, its application to
complicated food samples may need to be further investi-
gated. Therefore, there remains big challenges in the devel-
opment of commercialized biosensors with high sensitiv-
ity, automation, and rapidity for Salmonella in complex
food samples.
Although numerous Salmonella biosensors have been

described in the literature, the commercially available
ones for food industry are rather limited. Moreover, some
commercialized Salmonella biosensors are spin-offs from
research institutes. Their financial and technical viability
may not be well validated. In future studies, some signif-
icant issues in Salmonella biosensors such as sensitivity,
long-term stability, automation, minimization, detection

time, and mass production must be well balanced to facil-
itate their commercialization.

4.7 Biosensors for Salmonella
surveillance of the food safety system

Salmonella can enter the food supply chain at dif-
ferent stages, such as contamination on farm, cross-
contamination in the slaughterhouse, recontamination
during transportation, and further contamination at
wholesale and retail markets. Therefore, surveillance of
Salmonella is urgently needed for the entire food sup-
ply chain. Conventional culture methods fail to pro-
vide instant information about Salmonella contamina-
tion because they require several days for verified results.
Hence, contaminated foods cannot be controlled and
recalled effectively. Biosensors are potential to provide
quantitative information in a more rapid way. They are
hopefully to be involved into a food safety surveillance
system. By integrating with radio frequency identification
(RFID) technology, GPS, as well as other advanced tech-
nologies, it is expected to provide rapid, quantitative, track-
able, and sharable information about Salmonella contami-
nation in the whole food supply chain, thus enhancing the
food safety and reducing economic loss.
Furthermore, incorporation of biosensor data into a

risk analysis model will be more beneficial for dynamic
risk assessment. Quantitative microbial risk assessment
(QMRA) has been regarded as an essential method to
identify measures that can be taken to reduce or pre-
vent microbial contamination, subsequently evaluate and
mitigate the public health risk of the pathogens (Chen,
Karanth, & Pradhan, 2020). Developed QMRA model for
Salmonella was not dynamic feedback due to the existing
problem of delayed and limited quantitative information
about Salmonella contamination. Thiswill need to develop
the dynamic risk assessment model to predict the risk for
early warning. The model is expected to be embedded to
the project cloud platform and use the reliable biosensor
data as the timely input.
Last but not least, biosensors are likely to enter a

new stage by coupling with artificial intelligence (AI).
AI biosensors and their future for healthcare application
have been recently reviewed by Vashistha, Dangi, Kumar,
Chhabra, and Shukla (2018) and Jin, Liu, Xu, Su, and
Zhang (2020). This new concept also holds great poten-
tial to promote the surveillance and control of Salmonella
for the food supply system. Biosensors together with other
physical and chemical sensors are expected to be incor-
porated into the Internet of Things (IoT) to collect near
real-time data. The resulted large datasets can be fed into
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machine learning algorithms for prediction and decision-
making, thus helping prevent Salmonella outbreaks. The
integration of biosensors with AI technologywill be a huge
step toward improved food safety system.

5 CHALLENGES IN THE
DEVELOPMENT OF Salmonella
BIOSENSORS

Biosensors have gained extensive attention for Salmonella
detection with great potential of analysis in foodstuffs.
However, as an emerging technology, they are still not
ready for being used as routine analytical tools in the food
industry. Some challenges are highlighted as the follows.

5.1 Sample pretreatments

Sample pretreatments are inseparable parts of a
Salmonella biosensor dedicated for food samples. They
aim to reduce the complexity of the food matrices as well
as to increase the concentration of target bacteria prior to
detection. Conventional sample pretreatment methods are
centrifugation and filtration (Che et al., 2000; Hoszowski,
Fraser, Brooks, & Riche, 1996; McEgan, Fu, & Warriner,
2009). They enable physical enrichment of bacterial cells
with simplicity and rapidity, but show limitations of non-
specificity and loss of the target bacteria. Furthermore,
they always fail to eliminate the matrix effects caused by
soluble components.
Nowadays, much effort has been focused on novel sam-

ple pretreatment methods that are potential to be inte-
grated into biosensors, including IMS (Du et al., 2018),
microfluidic separation (He et al., 2013; Liu et al., 2019;
Srbova et al., 2018), electrophoresis (Nguyen, Nguyen, Bui,
& Seo, 2019; Zhang, Luo, et al., 2018), acoustophoresis
(Ngamsom, Lopez-Martinez, et al., 2016), magnetophore-
sis (Ngamsom, Esfahani, et al., 2016), and magnetic ionic
liquid-based extraction (Hice, Clark, Anderson, & Brehm-
Stecher, 2019). Among them, IMS has been regarded as one
of the most useful tools for selective capture, separation,
and concentration of Salmonella prior to detection. Vari-
ous nano- and micro-sized magnetic sorbents have been
extensively investigated for Salmonella separation from
different food samples (Brandão, Liébana, Campoy, Ale-
gret, & Pividori, 2015; Xu et al., 2015). And their capabilities
for large-volume sample treatment also have been demon-
strated. For example,Wang, Huo, Zheng, et al. (2020) com-
binedmagnetic particle chains with magnetic flow separa-
tion to concentrate Salmonella cells from 50 mL of sam-
ples with a separation efficiency of approximately 70%.
Evenwith these progresses, however,most of IMSmethods

are still restricted to small volume samples. Furthermore,
the main challenges of most IMS techniques may include
the aggregation of the particulate magnetic sorbents in
complicated food matrices and the prolonged assay time,
especially for MNPs with smaller sizes. Therefore, further
efforts may focus on the optimization of MNPs modifica-
tion and IMS (e.g., simulation of magnetic separation) in
real samples and on a large scale. Additionally, magnetic
materials with more interesting properties could also be
investigated, such as the capacities for signal generation
and amplification to realize separation/concentration sig-
nal amplification in one method.

5.2 Detection of Salmonella at low
concentrations

The commonly applied zero tolerance policy for
Salmonella in ready-to-eat food (Bover-Cid, Belletti,
Aymerich, & Garriga, 2017) requires detection methods to
be extremely sensitive. Though some reported biosensors
claim to lower their LODs down to 10 CFU/mL (Singh, Ali,
Kumar, et al., 2018; Singh, Ali, Reddy, et al., 2018), most of
Salmonella biosensors are still not sensitive enough when
compared to standard culture methods and real-time PCR.
Moreover, it is always difficult to evaluate the actual ana-

lytical performance of some reported Salmonella biosen-
sors in actual foodstuffs, as they are usually evaluated in
optimized buffer conditions and validated in spiked food
samples. Compared with these artificial samples, actual
foodstuffs are more complicated, which may lead to severe
matrix effects. Research has revealed that foodmatrices do
have some adverse effects on detection performance. Xu
et al. (2015) used a fluorescent aptasensor for simultaneous
detection of four foodborne pathogens with a LOD of 160
CFU/mL for S. Typhimurium in pure culture. However,
when applied it to ground beef, the LOD was increased to
750 CFU/mL. In other research, LODs in milk were also
found 10 times higher in comparison to those in pure cul-
tures (Farka et al., 2016; Srisa-Art, Boehle, Geiss, & Henry,
2018). Therefore, to detect extremely low concentrations of
Salmonella, especially in actual food samples, is still a huge
challenge. And it is also a complicated issue highly related
to the choice of appropriate sample pretreatmentmethods,
bioreceptors, and transducers.
Last but not least, LOD is commonly utilized in a

Salmonella biosensor to describe the lowest concentra-
tion that can be reliably detected and differentiate from
the assay background (González & Herrador, 2007). There
exist several ways of determining the LOD of a Salmonella
biosensor, such as calculation based on the mean of back-
ground (blank) signal plus three times of the standard devi-
ation (Xu et al., 2016) and three times of signal-to-noise
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ratio (Xiang et al., 2015). At the same time, inmany reports,
the LODwas determined based on the lowest bacterial con-
centration that could be detected. However, heterogeneous
distribution of Salmonella cells becomes significant when
the bacteria suspension is diluted to very low concentra-
tions. In such cases, the concentration of bacterial cells
determined based on the dilution may be untruthful (Wen
et al., 2013), which leads to an unreliable LOD. Moreover,
some reports did not present themicrobial testmethod that
they used in the experiment, which gave no solid evidence
of the LOD. Therefore, it is difficult to compare the LOD
values in different studies and further validation of those
theoretical LODs is necessary.

5.3 Discrimination of live and dead
bacterial cells

Currently, most of the biosensors for Salmonella detec-
tion are based on the recognition of membrane compo-
nents or DNA/RNA from bacterial cells. They always fail
to discriminate between live and dead bacterial cells. The
risk of infections maybe overestimated, leading to unnec-
essary product recalls and economic losses. Therefore, it is
necessary to discriminate and detect live Salmonella cells
from the dead ones as only the live cells are virulent and
pathogenic (Fang et al., 2018).
There are several biosensors capable of detection of

live Salmonella, among which some are based on bac-
terial growth and some utilize specific bioreceptors. A
magnetoelastic biosensor that monitored the growth of S.
Typhimurium in nutrient broths in real time was proposed
for the detection of live cells (Horikawa et al., 2016). How-
ever, this approach is invalid for the detection of VBNC
Salmonella cells. Bacteria in the VBNC state cannot mul-
tiply on routine culture media while are still alive and
maintaining metabolic activity. The virulence of VBNC
pathogens can be maintained or recovered after resus-
citation (Zhao, Zhong, Wei, Lin, & Ding, 2017). It has
been reported that several Salmonella species can enter
the VBNC state and regain culturability once the envi-
ronmental conditions are back to normal (Dong et al.,
2020; Ferro, Amorico, & Deo, 2018). Hence, differentiating
VBNC Salmonella from the dead ones is essential for pre-
vention of outbreaks. A bacteriophage with the ability to
distinguish viable and VBNC cells from dead S. Enteritidis
was immobilized on a magnetoresistive biochip surface
for viability assessment (Fernandes et al., 2014). Several
aptamers were also selected and applied for discrimination
of viable S. Typhimurium from the heat-killed cells (Labib
et al., 2012; Zhang et al., 2017). However, their recognition
capabilities toward VBNC cells may need to be further val-
idated because VBNC cells show some differences in cell

wall and membrane composition in comparison with the
normal cells (Li, Mendis, Trigui, Oliver, & Faucher, 2014).
In conclusion, research in biosensors for the discrimi-

nation of live and dead Salmonella is still in its infancy
and many technical hurdles need to be addressed includ-
ing the prolonged detection time (bacteria culturing), the
selection of appropriate bioreceptors, as well as the detec-
tion of VBNC cells.

5.4 In-field applications

For in-field applications, the long-term stability and porta-
bility of biosensors, as well as food sampling, are com-
mon concerns. Biosensors always function well in the lab-
oratory, but are instable outside of the lab as a result of
the poor stability of bioreceptors. Antibodies, as the most
commonly used bioreceptors, are always sensitive to tem-
perature, pH, salinity, heavy metal ion, protease, and so
on, making immunosensors not perform well in harsh
environmental conditions. Therefore, robust bioreceptors
should be developed to make biosensors more reliable out-
side of the lab. Aptamers with comparable or even higher
affinity and specificity, as well as stability, are recognized
as potential alternatives for Salmonella recognition. How-
ever, as the emerging ones, a lot of work needs to be done
for a deep understanding of these recognition elements,
including their selection and recognition mechanisms.
Besides,most of biosensors for Salmonella detection still

depend largely on laboriousmanual operations, restricting
their application to laboratory scales. Microfluidic tech-
nologies have opened new gates for the miniaturization
of biosensing systems and enhanced the detection capac-
ity. Compared with other transducers, optical and elec-
trochemical techniques are most commonly integrated
into microfluidic devices. Optical microfluidic biosen-
sors always display desirable sensitivities. However, issues
including high cost and complicated assembly process will
need to be well addressed further (Kant et al., 2018). In
the case of electrochemical microfluidic biosensors, their
detection performance and reproducibility should be fur-
ther improved. On the other hand, when compared with
conventional lab-setting instruments, microfluidics-based
biosensors may be less sensitive and accurate.
Last but not least, better sampling strategies are required

for in-field detection of Salmonella. The International
Organization for Standardization (ISO) has given recom-
mended sampling methods for different types of food (e.g.,
ISO/TS 17728:2015 for food and animal feed, ISO 707:2008
for milk and milk products, and ISO 17604:2015 for car-
casses). For example, excision, swabbing, and rinsing are
three common methods for poultry carcasses sampling
(Zhang, Ye, Xu, Zhou, & Cao, 2012). Generally, they are
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applicable with acceptable bacteria recoveries. However,
Salmonella can form biofilms on food contact surfaces
or even the surface of food products for greater resis-
tance to harsh conditions (Abeysundara et al., 2018; Shi
& Zhu, 2009). Biofilms are hard to remove due to the
strong biofilm–surface interactions (Keeratipibul et al.,
2017; Merino, Procura, Trejo, Bueno, & Golowczyc, 2019)
and subsequently decrease the bacteria recoveries and
cause an underestimation of pathogen contamination.
Keeratipibul et al. (2017) reported that the swab efficiency
of bacterial biofilms was approximately 40% lower than
those of recent cell inoculations in wet surfaces. There-
fore, biofouling of Salmonella, especially in the form of
biofilms, demands better sampling strategies. More funda-
mental studies on strategies for better removal of bacterial
biofilms and their incorporation into food sampling meth-
ods are urgently needed.

6 CONCLUSIONS AND FUTURE
PERSPECTIVES

This paper presents a comprehensive overview on biosen-
sors for Salmonella detection with three main signal
transducing mechanisms, including electrochemical, opti-
cal, and piezoelectric, and different bioreceptors such
as antibodies, aptamers, nucleic acid probes, bacterio-
phages, and more. Compared with electrochemical and
optical methods, piezoelectric biosensors are less studied
for Salmonella detection due to their higher LOD (>103
CFU/mL) and their vulnerability to external disturbances
that limits their in-field applications. Among optical
biosensors, colorimetry, SERS, fluorometry, and SPR are
four major signal transducing modes. Both SERS and SPR
biosensors enable label-free detection of Salmonella with
high simplicity and less reagent consumption. SERS can
provide unique whole-organism fingerprint information.
SPR biosensors have the ability for real-time monitoring
of biomolecular interactions. However, the LODs of these
twomethods, especially for the label-free strategies, should
be further improved. Generally, fluorescent biosensors can
detect Salmonella at a lower concentration, but the back-
ground noise is high and a spectrophotometer is required.
Colorimetric approaches can be used for qualificative and
semiquantitative screening without the requirement of
sophisticated equipment because the produced signals can
be observed by the naked eyes or scanned by a smartphone.
When very high sensitivity is required, electrochemical
biosensors would be more appropriate. Although amper-
ometric and voltammetric methods usually utilize extra
labels for signal amplification, impedimetric biosensors
have been extensively studied for label-free quantitation of
Salmonella. Potentiometric biosensors are also very sensi-

tive, but they need tedious sample pretreatments to elimi-
nate other components in samples to minimize their inter-
ferences. As each type of biosensors has its own strength
in a certain aspect, it is important to customize a suitable
format for a specific application. For a Salmonella biosen-
sor dedicated to applications in food safety, LOD, detec-
tion time, and in-field use are common concerns. Based
on the literature discussed in this review, electrochemi-
cal biosensors can be potential for ultrasensitive detection
of Salmonella with majority of publications in the past
5 years reporting LODs within 100 CFU/mL. Among elec-
trochemical biosensors, the impedance method is known
for its capability of label-free analysis. Its detection sensi-
tivity can be further improved by using electrode-modified
materials to improve electron transfer and surface area.
Therefore, impedimetric biosensors coupled with novel
electrode-modifiedmaterials are recommended as a candi-
date for ultrasensitive detection of Salmonella. In view of
reduced assay time, “ideal” biosensors can be those that are
capable of responding to the presence of Salmonella in food
matriceswithout any extra labeling process. In this respect,
one can choose SPR or QCM biosensors that allow label-
free and real-time detection of the binding event. More-
over, the total detection time for Salmonella in food should
be evaluated from food sampling to result report. Purifi-
cation of Salmonella cells from complex food extracts will
undoubtedly prolong the assay time, though sometimes it
is inevitable to reduce severe matrix effects. Antifouling
materials may provide surface resistance to fouling and
help simplify sample purification, thus reducing the total
assay time. Considering SPR is less sensitive to environ-
mental disturbances in comparison with QCM, label-free
SPR biosensors with antifouling coating can be a choice
for Salmonella detection in food when rapidity is a major
concern. From the aspect of in-field rapid screening of
Salmonella, the minimization and automation of a sens-
ing device or instrument are the major concerns. Colori-
metric biosensors with naked eye or smartphone readout
can be a potential candidate. At the same time, fluorescent
biosensors with portable spectrometers are also applicable
for in-field biosensing of Salmonella with high sensitivity.
Moreover, IMS has been well developed for the separation
and concentration of Salmonella cells from complex food
samples. Hence, the integration of a biosensor with IMS or
other sample pretreatment method is preferred for in-field
detection of Salmonella in food.
Though the application of biosensors for Salmonella

detection in the food industry is still immature, especially
in comparison to other conventional methods, it is still
a prosperous trend to develop robust biosensors for real
application and commercialization. In the future, biosens-
ing strategies in combination with nanomaterials and
novel bioreceptors remain attractive with many exciting
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possibilities. Increasing attention is focused on the imple-
mentation of innovative biosensingmethods with portable
and automated instruments such as microfluidic devices
and smartphones to endow biosensors with more prac-
tical, integrated, automated, and portable features. Fur-
thermore, with the development of information technol-
ogy, biosensors in combination with big data analytics and
AI are very likely to become a new trend to more effec-
tively monitor and predict Salmonella contaminations in
the whole food supply chain for food safety.
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